

Home Search Collections Journals About Contact us My IOPscience

Electron states at a solid $C_{60}/Si(111)$ interface

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 L691

(http://iopscience.iop.org/0953-8984/8/45/006)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.207 The article was downloaded on 14/05/2010 at 04:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Electron states at a solid $C_{60}/Si(111)$ interface

Y X Zhang[†], K M Chen[†], G G Qin[†], K Wu[†], C Y Li[†], S X Jin[†], Z N Gu[‡] and X H Zhou[‡]

† Department of Physics, Peking University, Beijing 100871, People's Republic of China
 ‡ Department of Chemistry, Peking University, Beijing 100871, People's Republic of China

Received 5 August 1996

Abstract. Electron states at a solid $C_{60}/Si(111)$ interface have been studied by the deep-level transient spectroscopy (DLTS) technique. An electron trap, $E_{it}(0.31)$, and three hole traps, $H_{it1}(0.27)$, $H_{it2}(0.36)$ and $H_{it3}(0.47)$, exist at the solid C_{60}/Si interface. H_{it1} and E_{it} are the dominant deep levels with densities of the order of magnitude 10^{11} cm⁻², and both of them probably originate from the dangling bonds on silicon(111) surfaces. The fact that the density of the interface states at the $C_{60}/Si(111)$ interface is low indicates that C_{60} passivates the Si surface.

The discovery of a convenient method of preparing fullerenes in large quantities [1,2] has stimulated a great many experimental studies on solid C_{60} films. It has been found that solid C_{60} films doped with alkaline metals can be superconducting [3] while undoped C_{60} films are insulating or semiconducting and have important electrical and optical properties [4-13]. Recently, studies have shown that there is a strong interaction between solid C_{60} films and Si substrates [11–18]. Scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) studies have confirmed that the C_{60} molecules form strong bonds with the Si substrate and this is associated with a significant charge transfer from Si substrate into C_{60} [16]. Studies on the electrical and optical properties of the solid C_{60} /Si contact have shown that both solid C_{60} /n-Si and C_{60} /p-Si are strong rectifying heterojunctions, and the rectification ratios are greater than 10^4 at ± 2 V [11–13] and the photovoltage may reach 0.4 V [17]. Studies on the structure of a C₆₀ film on a silicon substrate reveal that the surface states of the Si substrate have a critical effect on the quality of the C_{60} film deposited on it [18]. It can be predicted that the quality of the solid C_{60}/Si interface has a remarkable effect on the characteristics of the heterojunction mentioned above; however, few reports have been presented on this subject.

The present work reports on the measurements for the interface states at the C_{60}/Si interface. Two main deep levels $H_{it1}(0.27)$ and $E_{it}(0.31)$ are observed at the C_{60}/Si interface and are considered to originate from the dangling bonds on the Si(111) surface. The dangling bond densities are greatly reduced by the interaction of C_{60} and the Si(111) surface.

Two kinds of sample were used in this article: (i) solid C_{60}/n -Si, with n-type singlecrystalline silicon wafers (111) oriented and having a resistivity of 30 Ω cm; (ii) solid C_{60}/p -Si, with p-type single-crystalline silicon wafers (111) oriented and having a resistivity of 40 Ω cm. In order to obtain a good ohmic contact, gold films (\simeq 500 nm) and aluminium films (\simeq 1000 nm) were deposited on the back surfaces of n-Si and p-Si substrates, respectively, and they were annealed at 440 and 500 °C, respectively, in N₂ atmosphere for 30 minutes. The silicon wafers were dipped in a HF:H₂O = 1:20 solution to remove any

0953-8984/96/450691+06\$19.50 © 1996 IOP Publishing Ltd

L691

Figure 1. The DLTS spectrum of the solid C₆₀/n-Si heterojunction, rate window $\tau = 7.21$ ms, $V_R = -5$ V, $V_p = 5$ V and $t_p = 1$ ms.

oxide on their surfaces. The substrates were then cleaned by deionized water and dried with high-purity N₂ gas blowing, and conveyed immediately into an ultrahigh-vacuum (UHV) chamber for C₆₀ deposition. C₆₀ (99.9% purity) powders were prepared by the conventional AC arc method and purified by repeatedly performing liquid chromatography. The deposition of C₆₀ film was performed in a BALZERS UMS-500 UHV system with a chamber pressure of 10^{-9} torr at a silicon substrate temperature of $200 \,^{\circ}$ C. The deposition rate was $\sim 1 \text{ nm min}^{-1}$ and the C₆₀ film thickness was monitored *in situ* by a quartz-crystal oscillator. The C₆₀ films obtained were polycrystalline with a face-centred cubic structure, which was verified by low-energy electron diffraction pattern measurements. Titanium electrode dots of area $5.03 \times 10^{-3} \text{ cm}^2$ were then evaporated onto the C₆₀ films at $100 \,^{\circ}$ C in the same UHV system. The final thicknesses of the C₆₀ films were measured to be around 200 nm by use of a surface profiler (Sloan: Dektak 3030 ST).

The deep levels in the samples were measured by the deep-level transient spectroscopy (DLTS) technique. For the C₆₀/n-Si samples, the bias condition was as follows: reverse bias $V_R = 5$ V; pulse height $V_p = 5$ V, and pulse width $t_p = 1$ ms. A typical DLTS spectrum of solid C₆₀/n-Si with only one large peak at a temperature of around 263 K is shown in figure 1. The electron trap corresponding to this peak was denoted as E_{it}.

Figure 2 shows the relationship between the electron thermal emission rate of E_{it} traps at the C₆₀/n-Si interface and temperature (circles). The apparent electron activation energy and electron capture cross-section are determined to be 0.31 eV and 6.5 × 10⁻¹⁹ cm², respectively. The density of E_{it} is evaluated to be 1.1 × 10¹¹ cm⁻² by the high-frequency capacitance–voltage (CV) measurement and the DLTS peak height in figure 1.

Figure 3 shows the variation in the DLTS peaks of the electron trap E_{it} with the rate window at the sampling time ratio $t_1/t_2 = \frac{1}{2}$. It can be seen from this figure that the DLTS peak height of E_{it} increases by about a factor of two when the sample time t_2 is reduced from 50 to 0.5 ms. Fixing the sampling time ratio t_1/t_2 , the increase in DLTS peak height with the rate window indicates that the traps corresponding to the peak probably exist at the interface i.e. $E_{it}(0.31)$ is likely to be an interface defect.

Figure 2. The relationships of the electron thermal emission rate of E_{it} , and the hole thermal emission rates of H_{it1} and H_{it3} , versus reciprocal temperature.

Two facts prove that $E_{it}(0.31)$ is an electron trap at the solid C_{60}/n -Si interface. One is that the DLTS measurement of a Ti/n-Si Schottky diode (a control sample) made on the same substrate as that of the C_{60} n-Si shows no observable deep level in the Si substrate. The other is that the C_{60} film of a solid C_{60}/n -Si heterojunction is an undoped and weak n-type semiconductor with a resistivity of $5 \times 10^6 \Omega$ cm and the Fermi level is near the middle of the solid C_{60} energy gap. In such a semiconductor, only the electron trap near the mid-gap with a large electron capture cross-section can be detected by the DLTS technique under the bias conditions used for figure 1. If a defect such as E_{it} , with a level which is not sufficiently deep and a very small electron capture cross-section, were in the solid C_{60} it could not be measured under the measurement conditions for figure 1. Therefore, E_{it} is located in neither the n-Si nor the solid C_{60} , but at the C_{60}/n -Si interface.

A typical DLTS spectrum of solid C₆₀/p-Si samples under the bias condition of $V_R = 10$ V, $V_p = -10$ V and $t_p = 1$ ms is shown in figure 4. The three hole traps corresponding to the three DLTS peaks in figure 4 are denoted by H_{it1}(0.27), H_{it2}(0.36) and H_{it3}(0.47), respectively. In figure 2 the diamonds and squares show the relationships between hole thermal emission rates and temperature for H_{it1}(0.27) and H_{it3}(0.47), respectively, from which the apparent hole activation energy and the hole capture cross-section are determined, respectively, to be 0.27 eV and 1.2×10^{-16} cm² for H_{it1}, and 0.47 eV and 7.9×10^{-17} cm² for H_{it3}.

In order to determine the space position of the three hole traps, we performed a DLTS measurement on a Ti/p-Si junction (a control sample) fabricated on the same substrate as that of the C_{60} /p-Si sample. The results show that there is no observed deep level in the p-Si substrate. This indicates that the three hole traps do not belong to the p-substrate. For the same reasons as those for the electron trap E_{it} in C_{60} /n-Si, the three hole traps are not located in the solid C_{60} film either. Therefore, the three hole traps must be located at the interface of C_{60} /p-Si. The main parameters of the electron trap and the three hole traps are listed in table 1.

The origins of the traps E_{it} , H_{it1} , H_{it2} and H_{it3} at the solid C_{60}/Si interface can be analysed as follows. Since the Si(111) surface was not passivated intentionally before the C_{60} film was deposited, a large number of dangling bonds of silicon must exist there. Recent

Figure 3. Variation in the DLTS peaks of the electron trap E_{it} with the rate window $t_1/t_2 = \frac{1}{2}$, $V_R = -5$ V, $V_p = 5$ V and $t_p = 1$ ms.

Figure 4. The DLTS spectrum of the solid C₆₀/p-Si heterojunction, $V_R = 10$ V, $V_p = -10$ V, $t_p = 1$ ms and $\tau = 7.21$ ms.

experiments indicate that these kinds of defect will strongly affect the deposition process of C_{60} on the Si surface and the quality of the C_{60} films deposited [18]. Some double bonds of C_{60} molecules may be broken to form C dangling bonds due to disturbance of the Si dangling bonds. Besides Si and C dangling bonds, a variety of impurities may also exist at the interface.

It can be seen from table 1 that the density difference between E_{it} and H_{it1} is within the error range of the DLTS measurement. So we could consider that they have almost identical densities. The energy levels of H_{it1} and E_{it} at 0 K are located at $E_v + 0.27$ eV $\frac{\text{Trap}}{\text{E}_{it}} \\
\frac{\text{H}_{it1}}{\text{H}_{it2}} \\
\text{H}_{it3}$

	Activation energy (eV)	Carrier capture cross-section (cm ²)	Density (cm ⁻²)	
	0.31	6.5×10^{-19} (electron)	1.1×10^{11}	
	0.27	1.2×10^{-16} (hole)	9.9×10^{10}	
	0.36	_	$6.8 imes 10^8$	
	0.47	7.9×10^{-17} (hole)	5.3×10^{9}	

Table 1. The electrical parameters of E_{it} , H_{it1} , H_{it2} and H_{it3}

and $E_v + 0.86$ eV, respectively, and the energy gap between them is 0.59 eV. Studies on electron states at the Si/SiO₂ interface [19–24] have confirmed that in the process of thermal oxidation without post-annealing, a dominant defect, the trivalent Si (\bullet Si \equiv Si₃), also called the P_b centre, exists at the interface. This defect is an amphoteric centre with a donor level located at $E_v + 0.26$ eV and an acceptor level at $E_v + 0.84$ eV [24]. Comparing our measurement with these results, H_{it1} and E_{it} are possibly the two energy levels of a silicon dangling bond.

The density of the interface states observed at the $C_{60}/Si(111)$ interface is only in the order of magnitude of 10^{11} cm⁻² while the defect density of the original silicon(111) surface should be in the order of 10^{15} cm⁻². The defect densities at the $C_{60}/Si(111)$ interface are far smaller by comparison with that at the original silicon (111) surface. Possible reasons for sharply reducing the number of interface defects are various, for instance, the hydrogen adsorption on Si(111) surfaces caused by dipping the samples in the HF:H₂O = 1:20 solution was not removed completely in the ultrahigh-vacuum (UHV) system, and the oxygen in air moves through the solid C_{60} layer and reaches the C_{60}/Si interface. However, the fact that the interaction between the broken C double bonds of C_{60} and the silicon dangling bonds to form covalent bonds perhaps plays a leading role. This means that a solid C_{60} film can passivate the silicon surface.

In summary, we have observed two dominant deep levels, H_{it1} and E_{it} , at the solid C₆₀/Si interface. Most probably, they originate from silicon dangling bonds (P_b centres). The density of C₆₀/Si interface states is only 10¹¹ cm⁻², indicating that solid a C₆₀ film can passivate the silicon surface.

We would like to thank Y J Bi, Z N Yu and S Ye for their help with the experiments. This work was supported by the National Natural Science Foundation of China and the Fund for Excellent Young University Teachers of the State Education Commission of China.

References

- [1] Kratschmer W, Fostiropoulos K and Huffman D R 1990 Chem. Phys. Lett. 170 167
- [2] Kratschmer W, Lamb L D, Fostiropoulos K and Huffman D R 1990 Nature 347 354
- [3] Hebard S F, Rosseinsky M J, Haddon R C, Murphy D W, Glarm S H, Palstra T T M, Hamirez A P and Kortan A R 1991 Nature 350 600
- [4] Haddon R C et al 1991 Nature 350 320
- [5] Mort J, Ziolo R, Machonkin M, Huffman D R and Ferguson M I 1991 Chem. Phys. Lett. 186 284
- [6] Kaiser M, Reichenbach J, Byrne H J, Anders J, Maser W, Roth S, Zahab A and Bernier P 1992 Solid State Commun. 81 261
- [7] Hosoya M, Ichimura K, Wang Z H, Dresselhaus G, Dresselhaus M S and Eklund P C 1994 Phys. Rev. B 49 4981
- [8] Pichler K, Graham S, Gelsen O M, Friend R H, Romanow W J, McCauley J P Jr, Coustel N, Fischer J E and Smith A B III 1991 J. Phys.: Condens. Matter 3 9259

L696 *Letter to the Editor*

- [9] Yonehara H and Pac C 1992 Appl. Phys. Lett. 61 575
- [10] Pichler K, Harrison M G, Friend R H and Pekker S 1993 Synth. Met. 55-57 3229
- [11] Chen K M, Jin S X, Jia Y Q, Wu K, Zhao W B, Li C Y and Gu Z N 1994 Chinese J. Semicond. 15 720
- [12] Chen K M, Jia Y Q, Jin S X, Wu K, Zhao W B, Li C Y and Gu Z N 1994 J. Phys.: Condens. Matter 6 L367
- [13] Chen K M, Jia Y Q, Jin S X, Wu K, Zhao W B, Li C Y, Gu Z N and Zhou X H 1995 J. Phys.: Condens. Matter 7 L201
- [14] Balooch M and Hamza A V 1993 Appl. Phys. Lett. 63 150
- [15] Thundat T, Warmack R J, Ding D and Compton R N 1993 Appl. Phys. Lett. 63 891
- [16] Wang X D, Hashizume T, Shinohara H, Saito Y, Nishina Y and Sakurai T 1993 Phys. Rev. B 47 15 923
- [17] Kita K, Wen C, Ihara M and Yamada K 1996 J. Appl. Phys. 79 2798
- [18] Hebard A F, Zhou O, Zhogn Q, Fleming R M and Haddon R C 1995 Thin Solid Films 257 147
- [19] Nishi Y 1965 Japan. J. Appl. Phys. 5 333
- [20] Nishi Y 1971 Japan. J. Appl. Phys. 10 52
- [21] Caplan P J, Poindexter E H, Deal B E and Razouk R R 1979 J. Appl. Phys. 50 5847
- [22] Johnson N M, Biegelsen D K, Mayer M O, Chang S T, Poindexter E H and Caplan P J 1983 Appl. Phys. Lett. 43 563
- [23] Lenaham P M and Dressendorfer P V 1984 J. Appl. Phys. 55 3495
- [24] Poindexter E H, Gerardi G J, Rueckel M E, Caplan P J, Johnson N M and Biegelsen D K 1984 J. Appl. Phys. 56 2844